Àá½Ã¸¸ ±â´Ù·Á ÁÖ¼¼¿ä. ·ÎµùÁßÀÔ´Ï´Ù.
KMID : 1024520100190080951
Journal of the Environmental Sciences
2010 Volume.19 No. 8 p.951 ~ p.960
Electricity Generation and De-contamination Effect for Characteristic Electrode Material in a Microbial Fuel Cell System Using Bay Sediment
Kwon Sung-Hyun

Song Hyung-Jin
Lee Eun-Mi
Cho Dae-Chul
Rhee In-Hyoung
Abstract
Sediment works as a resource for electric cells. This paper was designed in order to verify how sediment cells work with anodic material such as metal and carbon fiber. As known quite well, sediment under sea, rivers or streams provides a furbished environment for generating electrons via some electron transfer mechanism within specific microbial population or corrosive oxidation on the metal surfaces in the presence of oxygen or water molecules. We experimented with one type of sediment cell using different anodic material so as to attain prolonged, maximum electric power. Iron, Zinc, aluminum, copper, zinc/copper, and graphite felt were tested for anodes. Also, combined type of anodes-metal embedded in the graphite fiber matrix-was experimented for better performances. The results show that the combined type of anodes exhibited sustainable electricity production for ca. 600 h with max. 0.57 W/m2 Al/Graphite. Meanwhile, graphite-only electrodes produced max. 0.11 W/m2 along with quite stationary electric output, and for a zinc electrode, in which the electricity generated was not stable with time, therefore resulting in relatively sharp drop in that after 100 h or so, the maximum power density was 0.64 W/m2. It was observed that the corrosive reaction rates in the metal electrodes might be varied, so that strength and stability in the electric performances(voltage and current density) could be affected by them. In addition to that, COD(chemical oxygen demand) of the sediment of the cell system was reduced by 17.5¡­36.7% in 600 h, which implied that the organic matter in the sediment would be partially converted into non-COD substances, that is, would suggest a way for decontamination of the aged, anaerobic sediment as well. The pH reduction for all electrodes could be a sign of organic acid production due to complicated chemical changes in the sediment.
KEYWORD
Sediment cell, Anodic material, Metal, Graphite felt, Electricity, COD reduction
FullTexts / Linksout information
Listed journal information
ÇмúÁøÈïÀç´Ü(KCI)